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Abstract  

A general formulat ion of the theory of the secondary 
radiat ion yield by X-ray diffraction in a crystal  is given 
which enables such processes as photoelectric effect, 
fluorescence and thermal diffuse scattering (TDS) to be 
described in a unified way. Expressions describing TDS 
by crystals are obtained with an account  of  their elastic 
properties. TDS specificity is analyzed in detail. It is 
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shown that  the TDS yield curves are determined not 
only by the scattering cross sections for the incident 
and diffracted waves, but also by the phase relations 
between the scattering amplitudes. 

1. Introduct ion 

In the last 10-15 years, the study of the angular 
dependence of secondary radiat ion yields, i.e. for 

(c) 1981 International Union of Crystallography 



126 THERMAL DIFFUSE SCATTERING 

photoelectrons, fluorescent radiation, the radiation due 
to thermal diffuse scattering, etc. ,  which arise during 
the interaction of X-rays with the atoms of a crystal 
under conditions of X-ray Bragg diffraction on the 
atomic planes, has met with ever increasing interest. 
The general theoretical analysis of the problem and a 
review of experimental work is given by Afanas'ev & 
Kohn (1978). 

The angular dependence of secondary radiation yield 
is, first of all, strongly affected by the structure of the 
X-ray wave field in a crystal under dynamical 
scattering conditions. Besides, as has been recently 
shown, the yield curves of secondary photoelectrons 
(Kruglov & Shchemelev, 1976; Afanas'ev et  al. ,  1977) 
as well as those of fluorescent radiation (Andersen, 
Golovchenko & Mair, 1976) from foreign atoms 
introduced at a small depth into the crystal are 
extremely sensitive even to very small distortions of the 
layer adjacent to the surface of a crystal. This allows 
one to hope that the study of the secondary processes 
will continue to attract the attention of physicists 
engaged in the X-ray diffraction problem. 

In the paper by Afanas'ev & Kohn (1978) the 
general theoretical approach to analysis of secondary 
processes accompanying X-ray diffraction, in both 
ideal and distorted crystals, was developed and the 
detailed analysis of the problem of photoelectron yield 
was carried out. The results of the developed theory 
can be directly used for the analysis of the fluorescent 
radiation yield. However, as far as TDS is concerned, 
more accurate analysis of the problem is required 
within the framework of the scheme developed by 
Afanas'ev & Kohn (1978). It is the treatment of this 
problem that served as an impetus toward writing this 
paper. 

An attempt to develop a theory of the TDS yield was 
made by Annaka (1968). However, this paper presents 
an oversimplified treatment of the problem. Owing to 
the coherent character of diffraction scattering, the 
TDS cross section together with the terms propor- 
tional to the intensities of incident and reflected waves 
contains the interference term as well. The magnitude 
of the latter depends on the phase relations between the 
corresponding scattering amplitudes, and is not deter- 
mined by the geometric mean as was adopted by 
Annaka (1968). 

In § 2 the general statement of the problem of 
evaluating the secondary radiation yield is given which 
enables the photoelectric effect and fluorescent 
radiation to be analyzed as well as the TDS. Taking 
further application of the theory to TDS into account, 
we have confined ourselves to the case of an ideal 
crystal. In § 3, corrections to the coefficients of 
dynamical equations due to TDS processes are 
evaluated. In § 4, some typical situations of the angular 
dependence of the TDS yield are analyzed using 
concrete examples. 

2. General theory of the yields of secondary processes 
on X-ray diffraction in ideal crystals 

Let the X-rays be incident on a crystal at an angle close 
to the Bragg angle. Along with the incident wave, there 
also arises the diffracted wave in a crystal. We shall 
assume that the diffraction conditions hold true only 
for one of the reciprocal-lattice vectors (the so-called 
two-wave case of diffraction). 

The wave field of X-ray radiation in a crystal can be 
represented in the form 

E(r) -- E0(z) exp (iko. r) + E h ( z )  e x p ( i k h . r ) ,  (1) 

where k 0 and k h are the wave vectors in the direction of 
the incident and diffracted waves, respectively. From 
the Maxwell equations one can readily obtain the 
following set of dynamical equations for the ampli- 
tudes E0(z) and Eh(z) 

dE'~  ik  
- I Z~o~ E~ + X'~fl, E~,] 

d z  ~'o 

dE '~  ik  
- -  - I Z"~hg E g + ( 2'~h ~, - t l (~ m n ) E nh l" (2) 

dz 7h 

Here and later the indices that repeat themselves twice 
signify summation, k : w / c ,  the superscripts m, n mean 
the components of E0.h(z), z is the depth of the 
reflecting layer within the crystal, 70,h are the cosines of 
the angles between the vectors ko, h and the inner 
normal to the entrance surface of the crystal. The 
parameter ~ defines the deviation from the Bragg 
conditions and X~,'h ~, is the Fourier coefficient of the 
polarizability tensor which usually is represented in the 
form 

Xhh' : Xrhh' + iXihh" 

Here Zrhh' and Zim,, are determined by the real and 
imaginary parts of the X-ray scattering amplitudes, 
respectively. The Xim,, coefficients can be expressed as a 
sum of terms to each of which a definite process of 
X-ray absorption, i.e. photoelectric effect (Ph), thermal 
diffuse scattering and Compton scattering (CS), makes 
a contribution. In accordance with this, 

Xihh' = Zi~h ' (Ph)  + Z i h h ' ( T D S )  + X ihh , (CS)  • (3) 

The form of (2) differs, to some extent, from the 
standard form of dynamical theory equations. In fact, 
when analyzing diffraction scattering one usually 
assumes that 

)~00 : Xhh" (4) 
This approximation, which was used by Afanas'ev & 

Kohn (1978) for analyzing the secondary processes, is, 
as a rule, performed with good accuracy. In the general 
case, however, (4) does not hold for thermal and 
Compton scattering. It should be noted that the 
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contribution of these processes to the coefficients Zinh' is 
small and may be neglected when evaluating the wave 
fields in a crystal or the reflection and transmission 
coefficients. However, in the analysis of TDS and CS 
these corrections play the leading part and, therefore, 
the tensor form for the polarizability coefficients is 
preserved in (2). 

To get the intensity of the secondary radiation yield 
let us consider a layer dz thick at depth z. The total 
absorption of X-rays in this layer is, evidently, 
determined by the difference between the incoming flux 
and outgoing flux, i.e. 

h ( z )d z  = )'011 E0(z) 12 -- IE0(z + dz)121 + 7hi IEh(z)l 2 

- -  I E h ( z  + dz)121 

dlE°(z)l 2 dlEh(z)l z] 
= - - -  + )'h dz. 70 clz 

Now using (2). we easily obtain 

x ( z ) -  k{E'~*(z) ~,'"" E'~(z) + E~*(z)  2"~i~ E~,(z) A iO0 

+ 2 RelEg'*(z) 2"//07, E~,(z)] }. (5) 

Making use of (3), we can separate out the contri- 
bution from each of the processes to the absorption. To 
do this one has, apparently, to replace ;(.i in (5) by 2'i(A), 
i.e. by the quantity related to the process under 
consideration. 

If the probability of the secondary radiation yield is 
defined by the function PA(Z), then the intensity being 
recorded will be defined by 

L 

h', ( . )  = ( dz P4 (z) K A (z, . )  (6a) 
o 

in the case where the secondary radiation emerges from 
the entrance surface of a crystal: and 

L 

h', ( . )  = ! dz P4 (L - z) h'A (Z, . )  (6b) 
0 

when the secondary radiation leaves the crystal 
through the exit surface. Here L is the thickness of the 
crystal and x.~ (z, . )  is determined by 

, m , ,  n (Z ,  , )  x., (z, , )  : k{ E'~*(z, , )  Zi00 (A) E o 

+ E~*(Z,,)X~"h"h(A) ET,(z,-) 

+ 2 RelEg'*(z. ")Z"ioT,(A)E~(z,,)l} (7) 

in accordance with (5). Here, in terms of the parameter 
~ we introduce explicitly the dependence upon the angle 
of incidence of X-rays on a crystal that also figured in 
(2) and (5). 

The problem of angular dependence of the second- 
ary radiation yield is fully solved by formula (7). The 
specificity of some or other process is expressed 
through coefficients ,/"" (A) and function PA(Z). The A ihl t '  

amplitudes E0. h do not, naturally, depend on the type of 
the recorded radiation and are defined only by the 
character of diffraction scattering. The analytical 
expressions for the field Eo, h(z) can be found, for 
example, in the book by Pinsker (1978). As for 
photoelectric absorption, it should be noted that it 
makes the main contribution to the coefficients Xihh' 
whose structure is well known. These coefficients 
determined the fluorescent radiation yield (c f  
Afanas'ev & Kohn, 1978). For the TDS process the 
corresponding contributions to Xinn, have not been 
calculated; this will be done in the next section. 

3. Structure of 2'th*'mn (TDS) 

The scheme for treatment of the angular dependence on 
the TDS yield is reduced to the following (¢f. Annaka, 
1968 and references therein). The incident direction of 
the X-rays is chosen (Fig. 1) so that for one of the 
reciprocal-lattice vectors (K0h) the Bragg condition is 
satisfied, while for the second one (K0h,,), although it is 
not valid, the difference I k 0 + K0h,,I -- I k01 = qmin is 
rather small, so that 

qmin "~ K0" (8) 

Under these conditions purely elastic diffraction 
scattering does not, practically, occur; however, a 
strong one-phonon inelastic scattering in the direction 
of kh,, takes place. This process as well as any other 
process of absorption or inelastic scattering con- 
tributes to the coefficients of the dynamical theory. 

The general scheme for the evaluation of corrections 
F,h~,, due to TDS was developed earlier by Afanas'ev & 
Kagan (1968)in connection with the problem of tem- 
perature dependence for the anomalous transmission 
effect. In this paper, the TDS occurring mainly in the 
vicinity of the directions of k 0 and k h was analyzed. An 
account of the TDS process when there arises the third 
direction for intensive thermal scattering, as in the case 

q =  khs s - -  I kol 

Fig. I. The wave vectors k 0, k h. k~, and the reciprocal-lattice 
vectors Koh. K0h,,. Khh,,. 
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under consideration, is taken within the framework of 
the scheme developed by Afanas'ev & Kagan (1968), 
although it requires very laborious intermediate calcul- 
ations. Below, we give only the final result 

6zr rg 
)~ih~,,(TDS) = F(kj, - kh,,) F(kh,,- kh,) 

-Q0 k 

T qo (c~m n k"~,,k~,,) 
x MC](h, h') In qmi, k 2 ' 

where 

1 

(9) 

( k ~ -  kh,,)l(kh,,- kh,) q 
C~(h,h') k 2 

1 {" Vt(j, O)) Vq*( j ,  O)) do) 
x Y : c2(j, o)) 2G (10) 

Y 0 

In formula (9), F(k) is the structure factor, M and/2o 
are the mass and volume of the unit cell, respectively, T 
is the temperature in energy units, r 0 is the classical 
radius of the electron, q0 has the value of the order of 
the limiting momentum of phonons. In formula (10), j 
labels three different acoustic modes, C(j, o)) is the 
sound velocity, the integration being extended over all 
directions perpendicular to the vector kh,,, V ~ and V q 
are the l and q components of the polarization vectors. 
Expressions (9), (10) allow complete analysis 
of the TDS specifically under diffraction con- 
ditions. As is seen from (9), (10), condition (4) is, 
apparently, violated here and the character of inter- 
ference is determined by both the geometry of 
scattering (i.e. by mutual orientation of k 0, k h and kk,, ) 
and the anisotropy of the elastic properties of the 
crystal. The evaluation of the tensor ,g~7,,(TDS) is, in 
fact, reduced to calculation of the coefficients C-;2(h, 
h') for which the dependence of the sound velocities 
and the polarization vectors in the direction of 
propagation of the sound wave in a crystal is assumed 
to be known. A more detailed analysis of this problem 
will be given in the next section. Here we shall only 
discuss the behaviour of the function PTDs(Z) which 
determines the probability of the scattered X-rays 
emerging from a crystal. The behaviour of this function 
is given by a simple exponential law 

P T D S ( 2 )  = exp {-/~o z/)¢' }, (11) 

where g0 is the linear absorption coefficient for X-rays 
of a given wavelength, ~," = cos (kh,, n), n is the unit 
vector normal to the entrance surface of a crystal. It 
should be noted that the scattered X-ray quanta may 
occur in the direction for which the Bragg condition is 
satisfied. In this case the probability of such quanta 
emerging from a crystal is, naturally, determined by 
another law and not by formula (11). However, the 

fraction of such quanta for ordinary experimental 
conditions is negligibly small. Formulae (6), (7), (9) 
and (11) fully determine all the features of TDS. If one 
neglects in formula (10) the dependence of sound 
velocity on the direction in a crystal as well as the 
difference between the velocities of longitudinal and 
transverse waves [this is the approximation used in 
Annaka's (1968) paper[, then the following simple 
expression for X'ih~, can be obtained 

~ih~,(TDS)= A(3mn k~,, k~,, ) kZ gin,' (12) 

where 

T 
ghh' = F(k~ - -  kh,, ) F(kh,, -- kh, ) 

mc~ 
(k~,- kh,,)(k h, -- kh,, ) 

× 
k 2 

A = "O0 k (13) 

In the paper by Annaka (1968), the approximation was 
made that 

gob = gho = ~oo ghh" ( 1 4 )  

As is seen from formula (13), however, relation (14) 
is not valid. But in some particular cases considered in 
the paper mentioned above, the vectors k h - kn,, and 
k h, - kh,, are nearly parallel to each other; as a result, 
relation (14) holds with good accuracy and the error in 
the corresponding theoretical curves is not great. It is 
clear that various situations may arise when relation 
(14) is violated. Examples of this kind will be given in 
the next section. 

One can easily take into account the difference 
between the velocities of the longitudinal (C,,)and trans- 
verse ( C )  waves, if the sound velocities themselves do 
not depend on the direction of propagation (the so- 
called case of an isotropic crystal). Under these con- 
ditions ghh' takes on the following form: 

gl, h' = F ( k h -  kh,,) F ( k h ' , -  kh,)-~-~ ~ + 

(k~--k~,,)(kh,--kn,,) ( 1 1 ) 
× k 2 + C: C? 

[ ( k  h - -  kh,, ) kh,,ll(k h, - kh,, ) kh,,I] 
X k 4 t • (15) 

The presence of anisotropy does not allow an 
analytical expression for gin,,, even for cubic crystals. 
If the anisotropy parameter is small, then the approxi- 
mate expressions for the ghh' coefficients in a cubic 
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crystal may be written as T{(I 
ghh, = F(kh - -  kh" )  F(kh" -- kh') ~ - ~  C44 

( k  h - -  kh , , ) (k  ~, - -  kh,, ) 
X 

k 2 

1) 
- -  -Jl- - -  

CII 

CI2 "{- C44 [(k h - kh,,)kh,, li(k h, -kh,,)kh,,] 

CII C 4 4  k 4 

C11-- 2C44 --  C12 
+ 

CII C 4 4  

(k  h --  kh,,)X(kh, - kh,,)  x kXh ~, 
x k 4 

(ka - kh,,)Y(kk,- kh,,) y k~Y, 
+ 

k 4 

+ ( k h - - k h " ) z ( k h ' - - k ~ " ) z k z ~ 2 ' ] } k  4 . (16) 

Here C~,  C~2 and C44 are the elastic constants of a 
cubic crystal. 

The approximation formula (16) may be used to 
compute the coefficients for such crystals as Si and Ge. 

4. TDS under Bragg diffraction conditions 

Let us consider the case where diffraction in the Bragg 
geometry takes place, and the quanta scattered by the 
lattice vibrations emerge from the exit surface of a 
crystal. We shall consider the incident radiation on a 
crystal as being polarized and the crystal sufficiently 
thick that Lp0 >> 1. The field distribution in the crystal 
is determined by the expressions 

{ ikc (a)  z} 
Eo.h(Z,a) = Eo.h((O exp , (17) 

70 

Eo(<,) = E.., Eh(<,) = V/-fl Ro(<O El., 

where E~. is the incident wave amplitude, 

e(<,)=½1Xo+ v/-~v/x~,xhO '+ - v I . H  - 1)1, (18) 

Ro(<,) =~X~ (y -+ v / f -  1), (19) 

<,f l  - Zo (  1 + fl) ;, 
v = - - ,  f l -  (2o) 

" 2 V/fl V/Xh Xh 17hi 

The sign in front of the root in (18), (19) is determined 
by the condition Im t:(~t) > 0. If we substitute (17) and 
(11) in formulae (6a) and (7), then we obtain 

goo + [3PR(<t) ghh + 2 V/-~ goh RelRo(<0l 
KTDS (<0 = (21) 

p(<l) +/~o/7" 

with an accuracy of the nonessential constant factor. In 
this equation 

2k 
p ( , )  = - -  Im e(a), pR(a ) __ i R0(a) 12. 

70 

We recall that in the case of fluorescent radiation 
emerging from the atoms of the host crystal we have a 
formula analogous to (21) in which one should assume 
that 

goo = gha = 1, gob = I:Jh = X i h / X i O  ' (22) 

where Xih, XiO are the imaginary parts of the dynamical 
equations coefficients. As a result, the following 
expression can be obtained 

1 + flPR((O + 2 V/fl e h RelR(a)] 
K'FL ( ( l )  = (23) 

~ ( < l )  + ~o/7" 

In accordance with formulae (18)-(20) there exists a 
correlation between the quantities Re[R0(-)l,  p(a)  and 
PR(t0, and each of them may be expressed in terms of 
the other two. Eliminating RelR0(a)l from (23), we 
easily obtain (cf. Batterman, 1964) 

( P° /7"  } "(24)  ~:FL = I1 - Pn00] - I1 - PR(")I p((~) + #0/Y" 

The fluorescent curve asymmetry is mainly determined 
by the second term in (24) because of the presence of 
the factor 

Po/7" 

p(<l) + I xo lT "  

[As a matter of fact, there is a weak asymmetry in 
PR (~0 as well, however, it does not practically affect the 
behaviour of the KFL00]. In Fig. 2 the representative 

1 

0.5 

- 4  - 2  0 +2 +4 y 

Fig. 2. Angular dependence of X-ray reflection coefficient PR(y)/ 
max - , max PR (curve l) and of fluorescent radiation yield KFLQ~)//K'FL 

(curve 2) for an ideal Si crystal on (l l l) reflection of  Cu Kn 
radiation. 
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curve of the fluorescent radiation yield is shown. The 
characteristic feature of such curves is that the intensity 
of the radiation yield for the large-angle side is a little 
higher than that for the small-angle side. 

In fact, the character of asymmetry can be changed 
by detecting the radiation coming from the impurity 
atoms, but not from the host atoms (el  Batterman, 
1969). 

In the case of TDS there is a greater variety of 
different behaviours of h'r,s(rt). This is because the 
relationships between g0o, gin, and gob coefficients, as is 
seen from formulae (13)-(16), may vary within very 
wide limits. In cases where goo -~ gin, TM go~ we have a 
situation close to the fluorescent one, i.e. the right-hand 
side intensity is higher than the left-hand side. One can 
also readily realize the situation when 

In this case 

g o o  > gin,'* (25) 

g00 
X,rDs ( ,)  = (26) 

ta(") + /aO/7" 

Comparing (26) with (24), one can easily see that the 
asymmetry is inversely changed. Asymmetry  of this 

kind has been observed and explained by Annaka 
(1968). 

It should be emphasized that the inverse asymmetry 
can be observed when goo = ghh and the gob coeffÉcient 
has the negative sign. Such a situation is realized, for 
example, in the case where Koh and Koh,, correspond to 
planes (242) and (220), respectively. It is just this 
possibility that has not been taken into account in the 
above-mentioned paper, although it can be easily 
realized. 

An interesting situation arises in the case where the 
condition opposite to (25) takes place. Here 

ghh PR (") 
KTDS 11(.) + &/~'" 

and, as is seen from Fig. 3, in the case under 
consideration the curve has two pronounced peaks, the 
right-hand peak being several times as high as the 
left-hand peak. 

In reality, various intermediate situations may arise 
along with the limiting cases under discussion. 

* Physically, condition (25) means that the scattering cross 
section for the incident wave is much greater than that for the 
diffracted wave. 

1 

0"5 t 

- 4  - 2  0 +2 +4 .v 

Fig. 3. Angular dependence of TDS yield tc-rr~s(y)/K~g,~ under 
conditions ghh > go0" 
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